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Abstract
We develop an analytic and environment-dependent interatomic potential for the
overlap repulsion in solid argon, based on an approximate treatment of the non-
orthogonal tight-binding theory for closed-shell systems. The present model
can reproduce the observed elastic properties of solid argon well, including
the Cauchy violation at high pressures, yet it is very simple. A useful and
novel analysis is given to show how the elastic properties are related to the
environment dependence incorporated into a generic pairwise potential. The
present study has a close link to the broad field of computational materials
science, in which the inclusion of environment dependence in the short-ranged
repulsive part of a potential model is sometimes crucial in predicting the elastic
properties correctly.

1. Introduction

Recent progress in Brillouin spectroscopy at very high pressures [1, 2] has revealed that
interatomic forces in face-centred cubic (fcc) solid argon must be far beyond any kind of two-
body, central force model. Shimizu et al [1] precisely measured a large violation of the Cauchy
relation up to 70 GPa and stressed the important role of many-body forces, in order to construct
good potentials for high-density noble gases, which should be crucial in understanding their
behaviour in planetary bodies by means of molecular simulations.

The Cauchy relation [3] for the elastic constants of cubic crystals at a hydrostatic pressure
P is given by C12 − C44 − 2P = 0, which must be satisfied in centrosymmetric cubic
crystals, including fcc solid argon, if the total energy is given by the sum of purely pairwise
terms. The deviation from it is therefore a measure of the many-atom nature of interatomic
interactions. The Aziz–Slaman model for high-pressure argon [4], which might be one of the
most sophisticated yet simple ones thus far proposed, fails to reproduce any violation of the
Cauchy relation, simply because the model is pairwise.

On the other hand, the ab initio density functional theory (DFT) approach using
the pseudopotential planewave method [5], and that with projector-augmented wave
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Figure 1. Total Cauchy violation, δ, decomposed into contributions from the kinetic (thin solid),
electrostatic (dot–dashed), and exchange–correlation (dashed) energies.

implementation for core electrons [6], and the linear muffin-tin orbital (LMTO) method [7, 8]
have successfully reproduced the observed elastic constants, as well as the density of the solid
argon over the measured range of pressure. From these theoretical results, it should be a natural
and logical consequence that one would expect to have a simple and reasonably accurate model
for the many-atom interaction in condensed argon, by coarse-graining the ab initio electronic
models to a rather empirical atomistic model.

The importance of many-body forces in solid argon at high pressures has been examined
by several authors along the idea of many-atom expansion [9–11], in which one assumes that
the total energy is ‘additively’ decomposable into N-atom (N = 2, 3, 4 . . .) terms plus the
additional energy of zero-point vibrations, and that the expansion is well convergent. The three-
atom contribution from the exchange energy was emphasized [10] because it stabilizes argon
in the fcc structure, rather than the hexagonal close-packed (hcp) structure, which is predicted
by all the available pairwise models without zero-point energy [11]. However, it is pointed
out that the convergence of this type of expansion becomes worse in a situation in which the
many-atom effect is more important [11].

Meanwhile, the Kohn–Sham total energy within the DFT is comprised of the well-
defined terms of kinetic, electrostatic and exchange–correlation energies. Pressure and elastic
constants, which are proportional to the first and second derivatives of the total energy, are
broken down into contributions from the three energy terms. Figure 1 shows the Cauchy
violation defined by

δ ≡ C12 − C44 − 2P, (1)

and its breakdown into the contributions from kinetic (kin), electrostatic (es) and exchange–
correlation (xc) energies predicted [8] by using an all-electron calculation within the DFT [12].
Each curve is plotted as a function of the total pressure. Clearly, the central role for the observed
negative δ is played by the kinetic energy, which remains after the large cancellation by the
opposite electrostatic and exchange–correlation contributions. It should be noted that non-
zero contribution from the electrostatic energy immediately excludes a primitive picture of
overlapping frozen atomic charge-density. Therefore, it is implied that deformation of density
(wavefunctions) should be relevant. In general, there is no unique way of decomposing the
DFT total energies to individual N-atom contributions because of overlapping many-atom
interactions. We show that the many-atom interactions in elastic properties of solid argon can
be modelled and explained without invoking the ansatz of additive many-atom expansion.
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The purpose of this paper is to develop an analytic interatomic potential for solid argon that
is based on the quantum mechanics of electrons, and that can reproduce the observed elastic
properties, including the Cauchy violation at high pressures, well, yet is made as simple as
possible. The problem we are to treat now has a close link to the broad field of computational
materials science, since the inclusion of environment dependence in short-ranged repulsion
is sometimes crucial [13–16] in obtaining reliable and transferable models for simulations in
empirical and semi-empirical approaches.

In section 2, a tight-binding description for overlap repulsion in closed-shell atoms, which
depends on atomic environment, will be presented as the theoretical base that underpins
the more empirical and analytic model. General properties of the repulsive potential with
environment-dependent parameters are analysed, and a simple functional form for the overlap
repulsion is designed for argon and proposed in section 3. The result of the fitted analytic
potential is presented in section 4, followed by conclusions in section 5.

2. Environment-dependent overlap repulsion: tight-binding description

A system of closed-shell atoms may be well described within the non-orthogonal tight-binding
bond model (TBBM) [17, 18], in which the total binding energy is given by

EB = Ecov + Eren + Erep + EvdW. (2)

The first term is the covalent energy

Ecov = 2 Tr[HS−1] − 2 Tr[H] = −2 Tr[HOS−1], (3)

where H and S = 1 + O are the Hamiltonian and overlap matrices defined by

(H)iμ, jν =
∫
ψ∗

iμ(r)Ĥψ jν(r) d3r (4)

and

(S)iμ, jν = δi, jδμ,ν + (O)iμ, jν =
∫
ψ∗

iμ(r)ψ jν(r) d3r, (5)

in a basis set of atomic orbitals ψiμ, where μ runs over orbitals on site i . The spin degeneracy
enters as the prefactor 2 before the usual symbol Tr for the trace. The Hamiltonian operator Ĥ
refers to the density of superposition of frozen atomic densities [18, 17]. Note that the inverse
overlap matrix, S−1, in equation (3) is equivalent to the density matrix in this case of a fully
occupied system. The second term in equation (2), Eren, is defined by

Eren = 2 Tr[H] − 2 Tr[Hfa], (6)

which accounts for the on-site energy shift due to the contraction or localization of free atomic
orbitals on going into a condensed environment, and Hfa is a diagonal matrix of the free
atomic energy levels. Erep represents the contribution from the change in the electrostatic
and exchange–correlation energies associated with frozen atomic charge densities as they
are brought together from free space. Thus, this term is environmentally independent by
construction, and it is usually approximated as a sum of repulsive pairwise potentials between
atoms. EvdW, added supplementarily to TBBM, denotes the van der Waals potential, which may
be approximated using the empirical pairwise inverse power function of interatomic separation,
that is −c6 R−6

i j .
In order to illustrate that equation (3) essentially represents the overlap repulsion, we now

consider only the outermost p-shell states as the basis, and then the bond integral [19] part, B,
may be separated from H as

H = εpS + B, (7)
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where εp is the common diagonal element of H. Further simplification can be made exploiting
the Wolfsberg–Helmholtz [19] (or extended Hückel) approximation to write B = −bO using a
constant b > 0. We easily find

Ecov = 2b Tr[O2(1 + O)−1], (8)

and see immediately that Ecov = 0 if the basis is orthogonal (i.e. O = zero), and it turns
into being repulsive when the O matrix is switched on. Note that equation (8) has no explicit
dependence on εp. The name of this term, therefore, is only nominal for the noble gases as it
gives overlap repulsion rather than the covalent bonding. The lowest-order term in equation (8)
is given by 2b Tr[O2], which may be broken down into contributions in a purely pairwise form

�i j(Ri j ) = 4b{|Oppσ (Ri j)|2 + 2|Oppπ (Ri j)|2}, (9)

where Oppσ (Ri j) and Oppπ(Ri j ) are σ - and π -overlap integrals along interatomic separation
Ri j . The higher-order correction terms, which arise from multiplication of (1 + O)−1 in
equation (8), or alternatively, multiplication of (1+O)−1/2 from both sides of O2 in a symmetric
Löwdin form, would introduce many-atom effects as derived by Nguyen-Manh et al for
environment-dependent bond integrals [20]. For simplicity of our model, we may neglect these
higher-order corrections to write

Ecov
∼= Tr[−2BO] = 1

2

∑
i �= j

�i j(Ri j) ≡ Eovl. (10)

Assuming the Slater-type atomic p orbitals with exponential tail of exp(−κir) for atom
i , the bond and overlap integrals decay like exp[− 1

2 (κi + κ j)Ri j ], and the overlap potential
equation (9) takes the form

�i j(Ri j ) = (polynomial of Ri j)× exp[−(κi + κ j)Ri j ]. (11)

A typical value of the decay constant (κi ) evaluated within the DFT for the 3p orbitals of
a free Ar atom is 2.0 Å

−1
. We note that the contributions from the 3s shell could be included

in the present formalism straightforwardly, which would add to equation (9) terms proportional
to |Ossσ |2 and |Ospσ |2. However, the decay constant for the 3s orbital is 2.8 Å

−1
, which is

large enough to damp down |Ossσ |2 and also |Ospσ |2 to an order of magnitude smaller than
(|Oppσ |2 + 2|Oppπ |2) within the range of atomic separations of our interest, that is, R > 2.6 Å,
which corresponds to hydrostatic pressures up to 90 GPa. Therefore, the present p-shell
approximation gives a good simplification to the construction of a minimal model, and the
small contributions from the 3s shell may be effectively absorbed and taken care of in the
fitting procedure.

An important environment effect can naturally be taken into account if we think of {κi}
as a set of variational parameters. It is a straightforward exercise to show for a hydrogen-like
atom with an effective atomic number Z∗ that (in atomic Rydberg units)∫

ψiμ(r)(−∇2 − 2Z∗/r)ψiμ(r) d3r = (κi − Z∗/2)2 − (Z∗/2)2 (12)

with −(Z∗/2)2 being the lowest p energy level; we see that the parabolic penalty for an
augmented κ arises from an increase in kinetic energy due to localization. This parabolic
behaviour occurs as a result of the change in the effective radius of the atomic wavefunction,
regardless of the particular form of the atomic pseudopotentials. Therefore, we may assume for
the diagonal matrix elements of Ĥ that

(H)iμ,iμ = (κi − κi0)
2 + εi0 = εi p(κi), (13)

where κi0 and εi0 are constants, and thus, Eren has the role of a penalty for the localization
of atomic orbitals through equation (13), while the localization will reduce the magnitude of
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overlap repulsion. Therefore the optimum values of {κi} will be determined by minimizing
Eovl + Eren with respect to each κi . In the case of p shells, given a simplified form for overlap
potential �i j = 6q exp[−(κi + κ j )Ri j ] with a constant q , this minimization leads to


κi = κi − κi0 =
∑
j ( �=i)

q Ri j exp[−(κi + κ j)Ri j ]. (14)

The set of solutions is indeed environment dependent, and we see that the constant κi0 is
the solution for the limiting case of infinitely separated atoms. Since the penalty due to increase
in the kinetic energy is steep, 
κi/κi0 would be small enough to replace κi in the exponential
in equation (14) with κi0. This solves the equation to give an explicit 
κi that is exact to first
order, that is,
κi = γi/6 with

γi =
∑
j ( �=i)

q Ri j exp[−(κi0 + κ j0)Ri j ] = −
(
∂Eovl

∂κi

)
0

, (15)

where the subscript 0 in the last expression denotes the evaluation at 
κ j = 0 for any j . The
energy increase 
Eren due to this minimization is given exactly by the sum of 3(
κi)

2, which
partially sets off and just halves the lowest-order decrease in overlap energy as


Eren({
κi})+
Eovl({
κi}) =
∑

i

3(
κi)
2 −

∑
i

γi
κi = − 1
2

∑
i

γi
κi . (16)

The resultant lowering, 1
2
Eovl, may more simply be given to first order by employing 1

2
κi

instead of 
κi in the overlap energy, namely


Eren({
κi})+
Eovl({
κi}) = 
Eovl({ 1
2
κi}). (17)

This treatment eliminates
Eren and simplifies the functional form of the potential, which is to
be proposed in the next section.

The environmental effect that we are looking at is a tendency that more contracted atomic
orbitals are preferred in a denser environment. The physics behind it has been beautifully
justified in the pioneering work by Skinner and Pettifor [21], who have implemented the
chemical pseudopotential theory using the orbital exponent as a variational parameter within the
Harris–Foulkes scheme [22, 23], and found that the orbital exponents (the κ in our notation) of
hydrogen atoms in the molecule, and in simple cubic and fcc lattices are strongly environment
dependent, as stated above.

3. Analytic model for solid argon

Let us first analyse some general properties of a repulsive potential that is a function of
environment-dependent parameters as well as the distance.

Provided that the functional form of the repulsive interatomic potential is given by

�i j(Ri j ; λi + λ j ) (18)

with the environment-dependent parameters (λ) that are written as a sum of pairwise functions,
namely

λi =
∑
k( �=i)

ρ(Rik), (19)

the Cauchy violation can be calculated analytically for a cubic lattice. The result is written
as [8]

δ = 2

9�

[
α2

0

∑
j ( �=0)

∂2�0 j

∂λ2
0

+ α0

∑
j ( �=0)

R j
∂2�0 j

∂R j∂λ0

]
(20)
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with

α0 =
∑

k( �=0)

Rkρ
′(Rk), (21)

where � is the atomic volume and R j = R0 j =
√

x2
j + y2

j + z2
j is the distance to atom j from

the central atom i = 0 at the origin. The prime on ρ denotes the distance derivative. Note
that all lattice sites are equivalent under a homogeneous strain. α0 represents the strength of
the environmental effect on atom 0. Since ρ(R) at this point is completely arbitrary, we may
assume that it is a positive and monotonically decreasing function of distance in the range of
interest; hence α0 < 0. It may also be a physically reasonable assumption that the repulsive
potential �0 j(> 0) is also a monotonically decreasing function of distance in the range of
interest. We see from equation (20) for the case of very weak α0 that negative Cauchy violation
occurs if ∂2�0 j/∂R j∂λ0 > 0. This condition is likely to be fulfilled, since an environmental
effect tends to weaken the overlap repulsion to give ∂�0 j/∂λ0 < 0, as we have seen in the
previous section. The expression for the pressure from � is given by

P = − 1

6�

[ ∑
j ( �=0)

R j
∂�0 j

∂R j
+ 2α0

∑
j ( �=0)

∂�0 j

∂λ0

]
. (22)

The first term in the square brackets represents the pairwise component. We see that the
environmental effect, the second term, causes a reduction in pressure, as expected.

A simple functional form of overlap repulsion that takes into account the physics of the
environment effect as we have discussed is now proposed, that is,

�i j(Ri j ; λi + λ j ) = exp(−λi ) exp(−λ j)VR(Ri j ), (23)

where VR is an environmentally independent pairwise function. The environmental effect on
site i enters in a very simple separable form through the factor exp(−λi ), which corresponds to
the contraction factor exp(−
κi Ri j). However, the direct dependence on the particular length
Ri j has been dropped for simplicity. This manner of parameterization for the environmental
effect can also be seen in the ‘breathing-shell model’ (see [24, 25] and references therein) and
‘compressible ion model’ [26] for oxides, such as MgO. Both models are provided with the
parameters that correspond to the variation in effective size of the ionic cores, and a reduction
in core size causes an exponential reduction as λi in the present model does. It should be noted
that a kind of penalty function has been eliminated from the present model, as was justified in
the previous section. The contraction factor of type exp(−
κi Ri j) was modelled by Nguyen-
Manh et al in the form of a screened Yukawa-type potential [16, 15] and it was used to explain
Cauchy pressures in transition metal intermetallics within tight-binding and Harris–Foulkes
approaches.

It follows from the functional form proposed above that full expressions for the pressure
P , Cauchy violation δ, adiabatic bulk modulus B , and the cubic elastic constants C11,C12,C44

are given by

P = 1
3 (−v + 2uα0), (24)

δ = 4
9 (−α0v + uα2

0), (25)

B = 2
3 P + 1

3 K + δ, (26)

C11 = −P + Ps + K s + δ, (27)

C12 = 1
2 (3P + K − Ps − K s)+ δ, (28)

C44 = 1
2 (−P + K − Ps − K s) (29)

6
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Figure 2. The Cauchy violation, δ, and pressure, P , as a function of strength of environment
dependence, α0, for the repulsive potential.

with

Ps = 1
3 (−vs + 2uαs

0), (30)

K = 1
3 (w − 2uβ0), K s = 1

3 (w
s − 2uβs

0), (31)

where u equals the energy density and v,w also are similar quantities determined by first- and
second-order derivatives of the potential, and us, vs , ws are weighted sums. These are defined
by

u = 1

2�

∑
j ( �=0)

�0 j , us = 1

2�

∑
j ( �=0)

�0 j s j , (32)

v = 1

2�

∑
j ( �=0)

R j�
′
0 j , vs = 1

2�

∑
j ( �=0)

R j�
′
0 j s j , (33)

w = 1

2�

∑
j ( �=0)

R2
j�

′′
0 j , ws = 1

2�

∑
j ( �=0)

R2
j�

′′
0 j s j , (34)

with s j = (x4
j + y4

j + z4
j )/R4

j . Together with α0, three other quantities representing the strength
of environment dependence are defined:

αs
0 =

∑
k( �=0)

Rkρ
′(Rk)sk, (35)

β0 =
∑
k( �=0)

R2
kρ

′′(Rk), βs
0 =

∑
k( �=0)

R2
kρ

′′(Rk)sk . (36)

Equations (24) and (25), seen as linear and quadratic functions of α0 respectively, explain
how the negative Cauchy violation occurs when an environment dependence is introduced,
as presented instructively in figure 2. It is to be noted that α0 = v/(2u) is an unphysical
point where our ‘repulsive’ potential is found to be no longer repulsive, giving P = 0.
Therefore, the magnitude of the dimensionless parameter α0 should usually be much smaller
than |v/(2u)|. An instructive example may be the case of inverse-power-law potential,
� ∝ R−n , in which the critical value can easily be found to be v/(2u) = −n/2. These
analyses should be useful in understanding how the environmental dependence in the repulsive
potential worked for the problem of small or negative Cauchy pressure (C12 − C44 for cubic
systems, C13 − C44 and C12 − C66 for tetragonal or hexagonal systems) in transition metals
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Table 1. The parameters for VR and ρ (see equations (37) and (38)) fitted to solid argon.

A (J) a1 (Å
−1

) a2 (Å
−2

) μ1 (Å
−1

) μ2 (Å
−2

) g ν (Å
−1

)

2.10 × 10−15 −0.5819 0.093 09 3.000 −0.039 96 80.0 3.60

and intermetallic compounds [16, 15]. In these covalently bonded systems at equilibrium, a
negative pressure Pbond from the attractive covalent bond energy counterbalances the positive
one from the repulsion. In figure 2, this situation corresponds to the ‘high-pressure’ case in
which P = |Pbond| and a negative contribution of δ with v/(2u) < α0 < 0.

Finally, parameterizations for the functions VR(R) in equation (23) and ρ(R) in
equation (19) must be determined. They are basically similar and are described by a
superposition of the square of two-centre overlap integrals. Using equations (11) and (14)
as a guide, we employ the following functions, namely

VR(R) = A(1 + a1 R + a2 R2) exp(−μ1 R − μ2 R2) (37)

and

ρ(R) = g exp(−νR), (38)

where the parameters A, μ1, g, ν are essential, and a1, a2, μ2 are for flexibility of the fitting.
We do not explicitly include the pairwise Erep in the present model, because it is actually

unknown, but may not be dominant, and therefore we may think of it as being absorbed
effectively in the pairwise component of overlap repulsion unless it proves significant.

4. Results

Using the model of overlap repulsion plus the pairwise van der Waals potential (−c6 R−6
i j ) with

the Lennard-Jones parameters for argon [27], i.e. c6 = 4εσ 6 with ε = 1.67 × 10−21 J and
σ = 3.40 Å, the parameters are fitted to the results [8] by ab initio full-potential LMTO
calculations with the generalized gradient approximation of PW91 (GGA-PW91) [28] for the
exchange–correlation, since GGA-PW91 results are remarkably in good agreement with the
experimental results for solid argon. However, GGA-PW91 is known always to predict positive
pressures, and a small positive pressure even at the experimental lattice constant a = 5.13 Å for
equilibrium at zero pressure. The adjusted parameters are listed in table 1.

Figure 3 shows the elastic properties of fcc solid argon predicted by the present model
compared with the experimental results. The agreement is impressive. However, a negative
curvature in predicted δ at very high pressures can be seen as a small deviation, which is
reflected in B , C11, C12 (and not in C44) as can be understood from the δ-term (and its absence)
in equations (26)–(29). This will be corrected if we design a more flexible function for ρ. But
if we do so, we also need to evaluate neglected terms, for example, the higher-order many-atom
effects due to (1 + O)−1 factor, which will be handled in a separate study.

The stability problem of fcc against hcp is still very subtle even with the present
environment-dependent model without zero-point energy. The result is very sensitive to the
cutoff. For example, using only the present repulsive model (without EvdW), the fcc–hcp
difference in enthalpy is evaluated to be −0.01 meV at 20 GPa and 0.11 meV at 60 GPa if
we include 86 neighbours within six shells in the fcc structure and equivalently within nine
shells in the hcp structure. The difference in the zero-point energy [9] would be dominant.
Therefore the environmental or many-atom effect in the overlap repulsion may not be a remedy
for the problem of fcc stability.

8
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Figure 3. Left: pressure versus lattice constant. Circles denote x-ray observation (see references
in [1]). Right: elastic constants versus pressure: the present model (solid lines) compared with
experimental results by Shimizu et al [1].

5. Conclusion

We have developed an analytic and environment-dependent interatomic potential for the overlap
repulsion in solid argon. The functional form, of environment dependence in particular, is
simple and physically transparent, being based on the non-orthogonal tight-binding theory
for closed-shell systems. The present model was shown to reproduce the observed elastic
properties of solid argon well, including the Cauchy violation at high pressures.

A useful and novel analysis has clearly demonstrated how the elastic properties are related
to the environment dependence incorporated into a generic pairwise potential. It is speculated
that the present functional provides not only an excellent description for the elastic properties
of a solid noble gas, but also a useful description for the problem of small or negative Cauchy
pressures in covalently bonded systems.
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